Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Animals (Basel) ; 13(6)2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2293736

ABSTRACT

We tested whether acute microplastic exposure impacts information gathering and processing (cognition) in hermit crabs (Pagurus bernhardus). For five days, we kept 51 hermit crabs in tanks containing either polyethylene microspheres (n = 27) or no plastic (n = 24). We then transferred individuals into an intermediate-quality shell and presented them with two vials containing either a better or worse shell. Because touching both shell vials required an equivalent behavioural response, this design controlled for general activity. Plastic-exposed hermit crabs were less likely and slower than controls to touch the better shell vial, instead preferring the worse shell vial. Microplastics, therefore, impaired assessments and decision-making, providing direct evidence of acute microplastic exposure disrupting hermit crab cognition.

2.
Appl Netw Sci ; 7(1): 78, 2022.
Article in English | MEDLINE | ID: covidwho-2122249

ABSTRACT

When studying large research corpora, "distant reading" methods are vital to understand the topics and trends in the corresponding research space. In particular, given the recognised benefits of multidisciplinary research, it may be important to map schools or communities of diverse research topics, and to understand the multidisciplinary role that topics play within and between these communities. This work proposes Field of Study (FoS) networks as a novel network representation for use in scientometric analysis. We describe the formation of FoS networks, which relate research topics according to the authors who publish in them, from corpora of articles in which fields of study can be identified. FoS networks are particularly useful for the distant reading of large datasets of research papers when analysed through the lens of exploring multidisciplinary science. In an evolving scientific landscape, modular communities in FoS networks offer an alternative categorisation strategy for research topics and sub-disciplines, when compared to traditional prescribed discipline classification schemes. Furthermore, structural role analysis of FoS networks can highlight important characteristics of topics in such communities. To support this, we present two case studies which explore multidisciplinary research in corpora of varying size and scope; namely, 6323 articles relating to network science research and 4,184,011 articles relating to research on the COVID-19-pandemic.

3.
Humanit Soc Sci Commun ; 8(1): 264, 2021.
Article in English | MEDLINE | ID: covidwho-1505836

ABSTRACT

[This corrects the article DOI: 10.1057/s41599-021-00922-7.].

4.
Humanities & Social Sciences Communications ; 8(1), 2021.
Article in English | ProQuest Central | ID: covidwho-1475552

ABSTRACT

The novel coronavirus SARS-CoV-2 and the COVID-19 illness it causes have inspired unprecedented levels of multidisciplinary research in an effort to address a generational public health challenge. In this work we conduct a scientometric analysis of COVID-19 research, paying particular attention to the nature of collaboration that this pandemic has fostered among different disciplines. Increased multidisciplinary collaboration has been shown to produce greater scientific impact, albeit with higher co-ordination costs. As such, we consider a collection of over 166,000 COVID-19-related articles to assess the scale and diversity of collaboration in COVID-19 research, which we compare to non-COVID-19 controls before and during the pandemic. We show that COVID-19 research teams are not only significantly smaller than their non-COVID-19 counterparts, but they are also more diverse. Furthermore, we find that COVID-19 research has increased the multidisciplinarity of authors across most scientific fields of study, indicating that COVID-19 has helped to remove some of the barriers that usually exist between disparate disciplines. Finally, we highlight a number of interesting areas of multidisciplinary research during COVID-19, and propose methodologies for visualising the nature of multidisciplinary collaboration, which may have application beyond this pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL